If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1+20x-2x^2=0
a = -2; b = 20; c = +1;
Δ = b2-4ac
Δ = 202-4·(-2)·1
Δ = 408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{408}=\sqrt{4*102}=\sqrt{4}*\sqrt{102}=2\sqrt{102}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{102}}{2*-2}=\frac{-20-2\sqrt{102}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{102}}{2*-2}=\frac{-20+2\sqrt{102}}{-4} $
| 5-2k+3k=1 | | 0.5n-6=4 | | 3=-8n+5n | | x+8−1=15x+35 | | x-1.6/3=9 | | 7+3(2x-5-)=-(3x+7) | | 2x+5-2x=1 | | (x+6)+(x+9)+(x+3)=2(x+1)+2(x+4) | | 3+p=9(1/2) | | A=(3x²×3.14)÷2 | | 5-6k=3+2k | | -48=-6+7v | | 3(3x+4)-19=4x-2 | | 5d+10=C | | 10d+5=C | | -x/4=7.2 | | 10d-5=C | | 18x43=774 | | 5d-10=C | | 3x=7=4X+5 | | -3m-15=2m | | 9(b-11)+18b=306 | | 6( | | 2/31/5=2/3x5/1 | | 1/6g+3=4-1/3g | | x+2(3)=15 | | 5p^2–14p+9=0 | | (6+0.5*y)*(y+-3.5)=0 | | 9(b−11)+18b=3069(b−11)+18b=3069(b−11)+18b=3069(b−11)+18b=3069(b−11)+18b=306 | | xxx=8 | | 3(x-4=5(x+1) | | 9(b−11)+18b=306 |